General information 
Course unit name: Nonlinear Programming and Flows in Networks
Course unit code: 361227
Academic year: 20212022
Coordinator: Julia De Frutos Cachorro
Department: Department of Economic, Financial and Actuarial Mathematics
Credits: 6
Single program: S
Estimated learning time 
Total number of hours 150 
Facetoface and/or online activities 
60 
 Lecture with practical component 
Facetoface and online 
30 

 ITbased class 
Facetoface and online 
30 
Supervised project 
40 
Independent learning 
50 
Learning objectives 
Referring to knowledge The course is based on the study and solving of decision problems using techniques that allow the systematic identification and evaluation of all possible decision options associated with the problem. Moreover, whenever the nature of the problem so allows, these problems are best formulated in mathematical terms.
Referring to abilities, skills In the case of nonlinear programming (NLP), students should be able to:

Teaching blocks 
1. Nonlinear programming
1.1. Introduction to nonlinear programming: preliminary concepts and definitions
1.2. Solving nonlinear programming problems with no constraints
1.3. Nonlinear programming methods based on approximations
1.4. Nonlinear programming with constraints: Method of Lagrange multipliers and KuhnTucker conditions
1.5. Algorithms for solving nonlinear problems with constraints
1.6. Applications
2. Network flows
2.1. Network models: basic definitions and examples
2.2. Shortest path problem
2.3. Maximum flow problem
2.4. Minimumcost flow problem
2.5. Other applications
Reading and study resources 
Consulteu la disponibilitat a CERCABIB
Book
AHUJA, Ravindra K. et al. Network Flows. Theory, algorithms, and applications. Upper Saddle River (N.J.): Prentice Hall, 1993
BAZARAA, Mokhtar S. et al . Linear programming and network flows. Hoboken, N.J.: John Wiley & Sons, 2010
Catāleg UB
Ed. en castellā: Programaciķn lineal y flujo en redes . México, D.F. : Limusa, cop. 1996
BALBÁS, Alejandro. et al. Programación Matemática. 2a ed. Madrid: AC, 1990
MARTÍN, Quintín. et al. Investigación Operativa. Problemas y ejercicios resueltos. Madrid [etc.]: Pearson Educación, 2005
SYDSÆTER, Knut. et al., Further Mathematics for Economic Analysis. 2nd edition, Finantial Times/Prentice Hall, 2008.
TAHA, Hamdy A. Investigación de operaciones. 9a ed. México [etc.]: Pearson Educación, 2012
WINSTON, Wayne L. Investigación de operaciones. Aplicaciones y algoritmos. México: Thomson, 2005