Teaching plan for the course unit

(Short version)

 

Catalā English Close imatge de maquetació

 

Print

 

General information

 

Course unit name: Statistical Methods for Data Mining

Course unit code: 361253

Academic year: 2021-2022

Coordinator: ARTURO PALOMINO GAYETE

Department: Faculty of Economics and Business

Credits: 6

Single program: S

 

 

Estimated learning time

Total number of hours 150

 

Face-to-face and/or online activities

60

 

-  Lecture with practical component

Face-to-face and online

 

30

 

-  IT-based class

Face-to-face and online

 

30

Supervised project

40

Independent learning

50

 

 

Learning objectives

 

Referring to knowledge

— Know how to classify the main data mining problems.

 

Referring to abilities, skills

— Evaluate data quality and the need to pre-process them.

— Identify the most appropriate statistical and/or machine learning techniques for the problem being addressed.

— Implement simple learning algorithms.

— Evaluate the results obtained.

— Present the results in a professional environment for the basis of subsequent decision- making.

 

 

Teaching blocks

 

1. Introduction to data mining

*  Types of problem: modeling issues, science issues, transaction issues, and marketing issues

2. Data visualization

*  Multivariate data visualization. Reduction of dimensionality. Methods of variable selection and extraction

3. Clustering

*  Methods of direct and hierarchical partitioning and mathematical statistics

4. Decision trees

*  Classification and regression trees (CART)

5. Association rules

*  A priori algorithms

6. Classification rules. Parametric discriminant analysis

*  LDA, QDA i Naive Bayes

7. Flexible methods of discrimination

*  Support-vector machines

8. Neural networks

*  Discrimination by multilayer perceptrons

 

 

 

 

Reading and study resources

Consulteu la disponibilitat a CERCABIB

Book

ALUJA, Tomàs, et al. Aprender de los datos: el análisis de componentes principales: una aproximación desde el Data Mining. Barcelona: EUB, 1999

Catāleg UB  Enllaç

HAND, D. J. Construction and assessment of classification rules. Chichester [etc.]: Wiley, 1997

Catāleg UB  Enllaç

HASTIE, Trevor, et al. The Elements of statistical learning. New York: Springer, 2001

Catāleg UB  Enllaç
Versiķ en línia: Accés directe restringit als usuaris de la UB  Enllaç

HERNÁNDEZ, José, et al. Introducción a la minería de datos. Madrid: Pearson, 2004

Catāleg UB  Enllaç

WITTEN, I. H., et al. Data mining: practical machine learning tools and techniques with java implementations. San Francisco [Calif.] [etc.]: Morgan Kaufmann, 2002

Catāleg UB (ed. 2000)  Enllaç
Catāleg UB (3rd ed., 2011)  Enllaç